Effects of sodium azide, barium ion, d-amphetamine and procaine on inward rectifying potassium channel 6.2 expressed in Xenopus oocytes.

نویسندگان

  • Fan-Lu Kung
  • Jung-Lung Tsai
  • Chien-Hsing Lee
  • Kuo-Long Lou
  • Chih-Yung Tang
  • Horng-Huei Liou
  • Kuan-Ling Lu
  • Yi-Hung Chen
  • Wun-Jheng Wang
  • Ming-Cheng Tsai
چکیده

BACKGROUND/PURPOSE Inward rectifying potassium channel 6.2 (Kir6.2DelataC26 channel) is closely related to ATP-sensitive potassium channels. Whether sodium azide, barium ion, d-amphetamine or procaine acts directly on the Kir6.2DeltaC26 channel remains unclear. We studied the effects of these compounds on Kir6.2DeltaC26 channel expressed in Xenopus oocytes. METHODS The coding sequence of a truncated form of mouse Kir6.2 (GenBank accession number NP_034732.1), Kir6.2(1-364) (i.e. Kir6.2DeltaC26), was subcloned into the pET20b(+) vector. Plasmid containing the correct T7 promoter-Kir6.2(1-364) cDNA fragment [Kir6.2/pET20b(+)] was then subject to NotI digestion to generate the templates for in vitro run-off transcriptions. The channel was expressed in Xenopus laevis oocytes. Two-electrode voltage clamping was used to measure the effects of sodium azide, barium ion, d-amphetamine and procaine on Kir6.2DeltaC26 channel current. RESULTS Sodium azide activated and barium ion and d-amphetamine inhibited the Kir6.2DeltaC26 channel. Procaine did not have any significant effect on the Kir6.2DeltaC26 channel. CONCLUSION Kir6.2DeltaC26 channel expressed in Xenopus oocytes can be used as a pharmacological tool for the study of inward rectifying potassium channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Identification of Selective Agonists and Antagonists to G Protein-Activated Inwardly Rectifying Potassium Channels: Candidate Medicines for Drug Dependence and Pain

G protein-activated inwardly rectifying K(+) (GIRK) channels have been known to play a key role in the rewarding and analgesic effects of opioids. To identify potent agonists and antagonists to GIRK channels, we examined various compounds for their ability to activate or inhibit GIRK channels. A total of 503 possible compounds with low molecular weight were selected from a list of fluoxetine de...

متن کامل

Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes

The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...

متن کامل

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Internal Na+ and Mg2+ blockade of DRK1 (Kv2.1) potassium channels expressed in Xenopus oocytes. Inward rectification of a delayed rectifier

Delayed rectifier potassium channels were expressed in the membrane of Xenopus oocytes by injection of rat brain DRK1 (Kv2.1) cRNA, and currents were measured in cell-attached and inside-out patch configurations. In intact cells the current-voltage relationship displayed inward going rectification at potentials > +100 mV. Rectification was abolished by excision of membrane patches into solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Formosan Medical Association = Taiwan yi zhi

دوره 107 8  شماره 

صفحات  -

تاریخ انتشار 2008